Darbellay et al. 194 (2): 335


Cytosolic Ca2+ signals encoded by repetitive Ca2+ releases rely on two processes to refill Ca2+ stores: Ca2+ reuptake from the cytosol and activation of a Ca2+ influx via store-operated Ca2+ entry (SOCE). However, SOCE activation is a slow process. It is delayed by >30 s after store depletion because stromal interaction molecule 1 (STIM1), the Ca2+ sensor of the intracellular stores, must form clusters and migrate to the membrane before being able to open Orai1, the plasma membrane Ca2+ channel. In this paper, we identify a new protein, STIM1L, that colocalizes with Orai1 Ca2+ channels and interacts with actin to form permanent clusters. This property allowed the immediate activation of SOCE, a characteristic required for generating repetitive Ca2+ signals with frequencies within seconds such as those frequently observed in excitable cells. STIM1L was expressed in several mammalian tissues, suggesting that many cell types rely on this Ca2+ sensor for their Ca2+ homeostasis and intracellular signaling.

View our supply of antibodies used in rna binding research here.

This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

To view original abstract click here